
208 Informatica Economică vol. 14, no. 1/2010

Upon a Message-Oriented Trading API

Claudiu VINŢE
Opteamsys Solutions, Bucharest, Romania

claudiu.vinte@opteamsys.com

In this paper, we introduce the premises for a trading system application-programming
interface (API) based on a message-oriented middleware (MOM), and present the results of
our research regarding the design and the implementation of a simulation-trading system
employing a service-oriented architecture (SOA) and messaging. Our research has been
conducted with the aim of creating a simulation-trading platform, within the academic
environment, that will provide both the foundation for future experiments with trading
systems architectures, components, APIs, and the framework for research on trading
strategies, trading algorithm design, and equity markets analysis tools. Mathematics Subject
Classification: 68M14 (distributed systems).
Keywords: Trading System API, Straight-Through Processing, Distributed Computing,
Service-Oriented Architecture (SOA), Message-Oriented Middleware (MOM), Java Message
Service (JMS), OpenMQ

A brief introduction to trading APIs
The information technology (IT) has made

exchanges far more efficient in handling heavy
volume in a timely fashion and at reasonable
cost. Furthermore, IT enables geographically
dispersed marketplaces to be more effectively
consolidated [1] [2]. The strategic advantage of
an electronic platform can be summarized in
form of the following beneficial effects:
 support for an efficient vertical integration

(from trading to settlement);
 supply the premises for a national and

regional strategy (horizontal integration);
 offers the fundaments for a decentralized

market access for participants;
 continuous or extended trading hours;
 better overall services for members

(availability, functionality, support);
 means for an effective centralized market

surveillance from the national regulatory
bodies.

In nowadays trading environment, a market
center strives to offer a fast and reliable access,
from anywhere and anytime, aiming to achieve a
fully integrated straight-through processing
(STP). The STP desiderate means that, once an
order is placed through the order routing channel,
it follows a fully integrated online procedure,
passing seamlessly from its entrance on the order
book, to matching on the exchange, and on
through to clearance and settlement [3] [4]. On
IT level, STP requires at least the vertical
integration of the capital market.
In this context, the trading systems employed by

the exchange members face a multitude of
challenges when it comes to the ability to adapt
to continuous changes and improvements
implemented both upstream (client connectivity
and interface) and downstream (settlement and
clearing).
In this context, the application-programming
interface (API) employed within the trading
system of a broker/dealer, or a market access
provider, acts as a binding agent among a variety
of applications that compose the system. From
that perspective, the manner in which the API is
designed to facilitate the interactions between
applications, it determines the characteristics and
the general behavior of the entire trading system.
The architectural design and API design of a
trading system are intrinsically connected [5].
There have been various approaches in trading
architecture design, along with the appropriate
APIs.
One of the earliest approaches was the client-
server architecture, employing TCP/IP socket-
based communication between the multiple
clients and the server [6] [7]. The corresponding
API consists in a collection of call-forwards
(request calls from the clients) and call-backs
(responses or other informative data provided
back to the clients by the server). Conceptually,
this communication paradigm can be identified in
most of the distributed computing models, the
differences residing in the underlying transfer
mechanism. One of the most commonly used
distributed computing model today by both Java
and .NET platforms is based on the concept of

1

Informatica Economică vol. 14, no. 1/2010 209

remote procedure call (RPC). Component-based
architectures such as JavaBeans are built on the
top of this model. RPC attempts to mimic the
behavior of a system that runs in one process.
When a remote procedure is invoked, the caller is
blocked until the procedure completes and
returns the control to the caller. This
synchronized model allows the developer to view

the system as if it runs in one process. Work is
performed sequentially, ensuring that tasks are
completed in a predefined order. The
synchronized nature of RPC tightly couples the
client (the software making the call) to the server
(the software servicing the call), as it is shown in
figure 1. The client cannot proceed – it is blocked
– until the server responds [8].

Application
C

Application
D

RPC
Client/Server

Application
A

Application E

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

Application
B

Fig. 1. A tightly coupled RPC based architecture

On of the most successful areas of the tightly
coupled RPC model has been in building 3-tier,
or n-tier, applications. In this model, a
presentation layer (fist tier) communicates using
RPC with business logic on the middle tier
(second tier), which accesses date stored on the
backed (third tier). The tightly coupled nature of
RPC creates highly interdependent systems,
where a failure on one system has an immediate
and debilitating impact on other systems. RPC
works well in many scenarios, but its
synchronous, tightly coupled nature is severe
handicap in system-to-system processing where
vertical applications are integrated together, as it
is the case with a trading platform, that has to
integrate client connectivity components, order
processing, market execution capture, trade
generation etc. In system-to-system scenarios, the
lines of communications between vertical
systems are many and multidirectional, as Figure
1 illustrates. When there is a new system to be
added to the platform that implies a going back,
and let all the other system know about it. When
one part of the system goes down, everything
halts. For example, when a client order is posted
to the order entry system, it needs to make a

synchronous call to each of the other systems.
This cause the order entry system to block and
wait until each system is finished processing the
order. Multithreading and looser RPC
mechanisms like CORBA’s one-way call can be
employed as options, but these solutions have
their own complexities. Threads are expensive
when not used wisely, and CORBA one-way
calls still require application-level error handling
for failure conditions. Furthermore, systems can
crash, object interfaces need to be updated and,
therefore, scheduled downtimes need to happen.
Summarizing, it is the synchronized, tightly
coupled, interdependent nature of RPC systems
that cause entire system to fail as a result of
failures in subsystems. When a tightly coupled
nature of RPC is not appropriate, as in system-to-
system scenarios, messaging provides an
alternative.
On a different approach, problems with
availability of subsystems are not an issue with
message-oriented middleware (MOM). A
fundamental concept of messaging is that
communication between applications is intended
to be asynchronous. The API design to connect
the applications together is a one-way message

210 Informatica Economică vol. 14, no. 1/2010

that requires no immediate response from another
application. In other words, there is no blocking,
or least no indefinite blocking. Once a message is
sent, the messaging client can move on to other
tasks; it does not have to wait for a response.
This is the major difference between RPC and
asynchronous messaging, and it is critical to
understand the advantages offered by messaging

systems.
In an asynchronous messaging trading system,
each subsystem (client connectivity lines, order
managing, market ordering lines, market
execution capture, trade generation etc.) is
decoupled from the other subsystems, as figure 2
illustrates.

Message
Server

(Broker)

 JMS
Client

Application
A

 JMS
Client

Application
B

 JMS
Client

Application
C

 JMS
Client

Application
D

 JMS
Client

Application
E

Fig. 2. JMS provides for a loosely coupled message-oriented architecture

The applications, subsystems communicate
through messaging server (message broker), so
that a failure in one does not impede the
operation of the others. This aspect is particularly
critical in the case of a trading platform, where is
imperiously necessary to offer order entry
availability to the clients, and ensure that the
executions results are returned to the investors as
soon as they are captured from the market by the
member or intermediary trading system. In a
distributed computing system, partial failure is a
fact. One of the subsystems may have an
unpredictable failure or may need to be shut
down at some time during its continuous
operation. Geographic dispersion of in-house and
partner trading systems can further amplify a
failure situation. In recognition of this, Java
Message Service (JMS) provides guaranteed
delivery, which ensures that intended consumers
will eventually receive a message, even if partial
failure occurs. Guaranteed delivery uses a store-
and-forward mechanism, which means that the
underlying message broker will write the
incoming messages out to a persistent store, it the
intended consumers are not currently available,
or active, from the message server perspective.
When the receiving applications become
available later, the store-and-forward mechanism

will deliver all the messages that the consumers
missed while not connected to the message
broker. The guaranteed delivery capability of a
MOM sets it apart from an object request broker
(ORB). An ORB or ORB-based middleware
enables an application’s objects to be distributed
and shared across heterogeneous networks, but
object persistence, even when this is ability is
offered, it increases the complexity of the ORB
and makes for an even more accentuated
dependency upon the common object libraries to
be distributed and maintained across the systems
[9] [10].

2 API requirements within a simulation-
trading environment
In real world environment, a trading system has
to combine a multitude of requirements, many of
them having puling in different directions and,
consequently, and equilibrium of contraries it is
desired to be obtained: it has to be fast, yet
flexible and adaptable; responsive, yet reliable
and consistent. In order to achieve such
characteristics, technically opposite in their
nature, the architectural design and the API
employed for the inter-application
communication have to be carefully tailored to
the specific needs. In our case, we have explored

Informatica Economică vol. 14, no. 1/2010 211

for an appropriate architecture and API suitable
for a simulation-trading platform, within the
academic environment. In this context, sheer
response time of the system as whole is not an
issue and, therefore, rather than focusing on the
inter-application communication aspects we have
opted out to research into the system
functionalities and the application- programming
interface that connects everything together.
Therefore, the API requirements within a
simulation-trading environment concern the
followings:
 the simulation-trading platform should consist

of the following systems at minimum:
o trading graphical user interface (GUI);
o order management server (OMS);
o trade generation and portfolio management

server (PMS);
o exchange simulation engine (ESE), to act

as a market place;
o pseudo-random order generator (PROG),

to enable a controlled, and desirably high,
liquidity on the simulation market;

o delayed-data feed (DDF), components to
be built around web service clients, for
capturing and disseminating delayed-data
supplied by the Bucharest Stock Exchange
(BSE) through the means of web services;

 the architecture for the trading platform has to
be one of service-orientation; the component
applications/subsystems need to be clearly
defined functionally, and have to have the
functionality exposed in the manner of a
service provider;

 the communication layer has to offer support
for both point-to-point and publish-and-
subscribe communication models;

 the point-to-point communication model has
to offer support for an event-driven
architectural behavior, and for a request/reply
type of mechanism;

 the simulation-trading platform has to be
reliable when it comes to order clients,
matching results, trades and portfolios
handling i.e., in case of subsystems failure,
there should be recovery mechanisms in
place;

 the system architecture has to offer great
flexibility regarding the possibility of adding
new application/subsystems in the future; the
API has to be design in such a way that, in the
eventuality of an extension, the current
functionality has not to be affected;

 the communication middleware has to provide
support for data persistence and store-and-

forward mechanism for possible assistance in
recovery scenarios.

Having the above stated requirements, for a
simulation-trading platform that is to be design
from ground up, an API design based on a
message-oriented middleware seems to be the
most appropriate approach [11] [12]. We
presented in [13] our earlier research upon the
design of a trading system architecture based on a
MOM, namely OpenMQ.
In this paper, we present the results of the
subsequent level of our research, concerning the
application-programming interface for the
architectural trading design previously
introduced.

3 Designing a service-oriented trading
architecture
In the process of designing an API for a trading
architecture of a service-orientation, we departed
from the functionalities the systems listed above
have to provide within the trading platform, and
the nature of the data that is to be exchanged
between them [14]. The trading API is design
based on platform independent Java Message
Service (JMS) interface [15] [16]. It exploits all
the communication models and the mechanisms
provided by JMS, for supporting the specific
functionality of each system, and the way it
interacts with another. For example, when an
investor places a new order in the system, it is
employed the asynchronous request/reply
mechanism provided by JMS. The trading GUI
produces and sends a new order message, to the
destination queue ORDER_REQUEST_QUEUE,
and then waits on the reply queue
ORDER_REPLY_QUEUE, for a specified amount
of time, to receive an acknowledgement from the
order management server (OMS). The name of
the reply queue is sent to the initial receiver
(OMS) through the request message. We have to
point out here that the asynchronous
request/reply offered through the JMS interface
does not block the requester processing flow
indefinitely, as is the case with a synchronous,
RPC-based request/reply, but for a certain
amount of time, specified by the application
programmer through the JMS interface. Once the
client order was successfully received and
processed by OMS, it is then flowed to the
simulation exchange (ESE) by being sent to the
destination queue CLIENT_ORDER_QUEUE.
This point-to-point order sending, from OMS to
ESE, is achieved using the fire-and-forget
mechanism, which means that the OMS sends the

212 Informatica Economică vol. 14, no. 1/2010

client order to the specified destination, and then
continues its processing flow, without waiting for
any reply from ESE. This mechanism completely
decouples ESE from OMS. However, the client
order status can be captured back by OMS, in a
similar asynchronous fashion, by receiving the

messages sent from ESE to the destination queue
MARKET_ORDER_QUEUE. The figure 3
illustrates these flows, in a normal trading
operation scenario.

Message Broker

ORDER_REQUEST_QUEUE

OMS

ORDER_REPLY_QUEUE

CLIENT_ORDER_TOPIC

CLIENT_EXECUTION_TOPIC

CLIENT_ORDER_QUEUE

MARKET_ORDER_QUEUE

PROG

MARKET_EXECUTION_QUEUE

PMS

Trading GUI

ESE

PRICE_TOPIC

DDF

Fig. 3. Client order and market execution flows in normal operation scenario

The dashed lines depict the reply message flow.
If the client order is matched on the simulation
market, then ESE generates an execution
message, which is sent asynchronously to the
destination MARKET_EXECUTION_QUEUE.
OMS listens to both destinations
MARKET_ORDER_QUEUE and
MARKET_EXECUTION_QUEUE, which are fed
asynchronously by ESE, and then publishes the
order status updates and the market generated
executions to the CLIENT_ORDER_TOPIC and
CLIENT_EXECUTION_TOPIC, respectively.
The applications that subscribe to these topics,
trading GUIs and portfolio management server
(PMS), will have to filter the published messages
in order to process only the messages intended to
them. In particular, PMS will subscribe for all
client order updates and market executions, in
order to generate the corresponding trades and
maintain client portfolios. It is worth mentioning
here, that PMS subscriptions to afore mentioned
topics are realized in a durable way. That allows
PMS to receive all the messages published to
those topics, regardless of it maintaining
continuously an active connection to the message
broker.

On a different flow, the delayed-data feed (DDF)
publishes, for the applications interested in it,
real market data updates captured from Bucharest
Stock Exchange (BSE), via a collection of web
service clients. Figure 3 shows the pseudo-
random order generator (PROG) as subscriber to
the PRICE_TOPIC. Based on the price updates
received from this topic, PROG is designed to
generate new orders and send them to ESE, for
enabling a controlled, and desirably high,
liquidity on the simulation market.
The trading GUI is offered as a web browser
accessible Java applet and, consequently, its
communication with the messaging platform is
achieved through a Java servlet responsible with
the HTTP tunneling. The intention and the format
of this paper do not afford us the necessary space
to go into all the details of this message-oriented
trading API. For further references, can be
consulted our website: www.iem.ase.ro. There
are numerous message flows, which cover
various levels of communication between
applications, for supporting multiple layers of
system business logic. For example, the
initialization phase of the trading GUI, may
involve the acquirement of the list of tradable
financial instruments for the given trading day.

http://www.iem.ase.ro/�

Informatica Economică vol. 14, no. 1/2010 213

Trading GUI achieves the list from OMS,
through the asynchronous request/reply
mechanism supplied by JMS. GUI sends a
request to the destination
INSTRUMENT_LIST_REQUEST_QUEUE and

then waits for OMS reply on destination
INSTRUMENT_LIST_REPLY_QUEUE, as
figure 4 shows.

Message Broker

LOG_IN_REQUEST_QUEUE

OMS

LOG_IN_REPLY_QUEUE

PRICE_TOPIC

INSTRUMENT_LIST_REQUEST_QUEUE

Trading GUI

DDF

INSTRUMENT_LIST_REPLY_QUEUE

LOG_OUT_REQUEST_QUEUE

LOG_OUT_REPLY_QUEUE

Fig. 4. Logging in and out, along with GUI initialization flows

Employing the same JMS communication model,
the logging in and logging out procedures are
achieved from the trading GUI with respect to the
corresponding involvement of OMS.
The trading GUI may also subscribe to the
PRICE_TOPIC, if the user wants to consult the
price data available from the market, along with
daily volume, number of transactions etc. for a
specified symbol.
All the messages flowed through the trading
system are marked to be persistent and, therefore,
to be stored by the message broker until the
intended destination acknowledge their
consumption. Once a persistent message is
received and acknowledged by the messaging
platform, its delivery to the intended destination
is guaranteed. The message server stores out on
disk every message marked as persistent,
providing a guaranteed delivery of the message
to the destination even in the case of server
failure.
In line with JMS requirements, the messages are
to be autonomous and self-contained entities.
Each message of the trading API contains only
the relevant data for a potential consumer to
process it. A message does not carry imbedded
instructions regarding the way in which it has to
be process by the consumer. However, a JMS

message may have defined certain application-
specific properties, in the form of a list of pairs:
<property name><property value>.
The application-specific properties may be used
for message filtering, event-driven processing, or
for letting the consumer know about the nature of
the message and, therefore, the possible ways of
processing it. Departing from Message
interface, JMS defines five more types of
messages that can be handled by the JMS
message server, namely: TextMessage,
ObjectMessage, BytesMessage,
StreamMessage, and MapMessage [17].
The Message interfaces are defined according
to the kind of payload they are designed to carry.
In some cases, Message types were included in
JMS to support legacy payloads that are common
and useful, which is the case with the
TextMessage, BytesMessage, and
StreamMessage message types. In other
cases, the Message types were defined to
facilitate emerging needs; for example
ObjectMessage can transport serializable
Java objects.
Being a new design from the ground up, our
current implementation of the proposed trading
API makes use of the ObjectMessage
interface, since the whole trading system is based

214 Informatica Economică vol. 14, no. 1/2010

on the Java platform. However, it may be easily
converted to a more open approach, which would
employ the MapMessage interface. This
interface allows for defining the payload as list of
pairs <key><value>. This approach would open
the road for a self-defined API: each data field in
the system has a uniquely assigned identification
label (key). Hence, each message payload may be
composed of a subset of the generically defined
collection of available date fields in the system.
Such an implementation would require additional
layers in the applications, for accomplishing the
necessary marshaling and de-marshaling
activities, in order to convert the data
encapsulated in a Java object to the
MapMessage type of payload, and vice versa.

4 Messaging as an agile and reliable approach
for a trading API
Benefiting from the guaranteed message delivery
supported by the JMS server, along with the
store-and-forward mechanism offered to the
durable subscribers, the trading API that we
propose does not need to address aspects related
to data persistence in each subsystem of the
trading platform. In fact, the order management
server (OMS) and the portfolio management
server (PMS) are the only subsystems that are
designed to interact with a database. It is the
business logic of the trading platform, which
commands for a persistent storage of the order
books, market executions and client portfolios. In
addition to that, the trading API has to provide
reliable procedures for system recovery in case of
a partial failure. For example, by subscribing in a
durable manner to CLIENT_ORDER_TOPIC
and CLIENT_EXECUTION_TOPIC, PMS
ensures that if it goes down unexpectedly, all the
messages published to those topics, while it has
lost the connection to the message server, will be
delivered to it once the connection is
reestablished. Similarly, the message broker will
store the client order messages, placed by OMS
onto the CLIENT_ORDER_QUEUE, until the
exchange simulation engine (ESE) consumes
them. However, there are restart/recovery
procedures that need to be addressed
programmatically, and the trading API has to
support them. For example, a trading GUI may
normally connect to and disconnect from the
trading system for multiple times during a trading
session. The investor would need to have
recovered and shown in the GUI the entire
trading activity that he or she has done during the

current trading day. In order to achieve this
desiderate transparently to the user, the trading
GUI has to actively request from OMS the list of
the orders that the investor has placed into the
order book during the current trading session, and
the list of the market executions associated to the
possibly matched orders. These flows make use
of the asynchronous request/reply mechanism, as
figure 5 illustrates.
In addition to procedures described above, there
may be requests from the investor for consulting
his or her history of completed transactions, and
the current situation of the portfolio of owned
financial instruments.
In case of an ESE failure, being a simulation-
trading environment, the recovery procedure
implies an active request to the OMS for all the
client orders sent to the market during the current
trading session, and which are not totally
executed. The exchange simulation engine is
designed to be very responsive and, in order to
achieve that, it keeps all the data in memory, and
does not waste time in persisting any data on
disk.
Summarizing, messaging is a very effective
means of building the abstraction layer within
SOA, needed to fully abstract a business service
(functionality) from its underlying
implementation. Through business messaging,
the business service (say, the order booking) does
not need to be concerned about where the
corresponding implementation service is, what
language it is written in, what platform it is
deployed in, or even the name of the
implementation service. Messaging also provides
the scalability needed within a SOA
environment, and also provides a robust level of
monitoring and control of requests coming into
and out of an enterprise service bus (ESB). For
example, in our implementation of the trading
API, it was not important how many OMS
instances might be brought up and kept running
at the same time. Scalability, in the context of
messaging systems, is achieved by introducing
multiple message receivers that can process
different messages concurrently. As messages
stack up waiting to be processed, the number of
messages in the queue, or what is otherwise
known as the queue depth, starts to increase. As
the queue depth increases (as client order
requests may accumulate in the
ORDER_REQUEST_QUEUE, for example)
system response time increases and throughput
decreases. One way to increase the scalability of
a system is to add multiple message listeners to

Informatica Economică vol. 14, no. 1/2010 215

the queue to process more requests concurrently.
This can be easily done dynamically, if the API is
designed to use message queues that handle
homogenous type of messages. Consequently, in

the design of our trading API we carefully
ensured that each specified destination handles a
particular type of payload.

Message Broker

ORDER_LIST_REQUEST_QUEUE

OMS

ORDER_LIST_REPLY_QUEUE

PORTFOLIO_LIST_REQUEST_QUEUE

PMS

Trading GUI

EXECUTION_LIST_REQUEST_QUEUE

EXECUTION_LIST_REPLY_QUEUE

ESE
PORTFOLIO_LIST_REPLY_QUEUE

TRADE_LIST_REQUEST_QUEUE

TRADE_LIST_REQUEST_QUEUE

Fig. 5. Flows concerning trading GUI and ESE restart/recovery scenarios

The use of messaging, as part of the overall
service-oriented trading solution, allows for
greater architectural flexibility and agility. These
qualities are achieved through the use of
abstraction and decoupling. With messaging,
subsystems, components, and even services can
be abstracted to the point where they can be
replaced with little or no knowledge by the client
components. Architectural agility is the ability to
respond quickly to constantly changing
environment. By using messaging to abstract and
decouple components, the trading API that we
have proposed in this paper, can quickly respond
to changes in software, hardware and even
business logic. Our intention was to design a
trading API, which can be adapted with ease to
the academic needs for future researches on
trading strategies, design of trading algorithms,
and equity markets analysis tools.

5 Conclusions
As part of our undergoing research, directed to
the overall design and implementation of a
simulation-trading platform within an academic,
the trading API proposed in this paper
intrinsically determines the characteristics of the

system as a whole.
With the presented API, the architecture of the
trading system that we intend to build within the
ASETS project (an abbreviation from the
Romanian version of the Trading System of The
Bucharest Academy of Economic Studies), is
currently contoured. In a simulation-trading
environment, human agents compete on
resources created by computer algorithms, within
a scenario-driven market place. The components
that create these scenarios have to sense the
trading patterns of the human investors, and act
accordingly. Designing a trading API based on a
message-oriented middleware provides the
optimum balance, with regards to the overall
system response, availability, reliability, and
flexibility in accepting future changes and
extensions.
The ability to swap out one system for another,
change a technology platform, or even change a
vendor solution without affecting the client
applications can be achieved through abstraction
using messaging. Through messaging, the
message producer, or client component (from the
perspective of the message server), does not need
to know which programming language or

216 Informatica Economică vol. 14, no. 1/2010

platform the receiving component is written in,
where the component or service is located, what
the component or service implementation name
is, or even the protocol used to access that
component or service (as we have seen with the
HTTP tunneling, for web accessible trading
GUI). It is by means of these levels of abstraction
that enable for replacing the components and
subsystems more easily, thereby increasing
architectural agility.

References
[1] H. McIntyre (editor), How the U.S. Securities

Industry Works - Updated and Expanded in
2004, The Summit Group Press, New York,
2004.

[2] A. R. Schwartz, R. Francioni, Equity Markets
in Action (The Fundamentals of Liquidity,
Market Structure & Trading), John Wiley &
Sons, Inc., 2004.

[3] H. McIntyre (editor), Straight Through
Processing, The Summit Group Publishing,
Inc., New York, 2004.

[4] L. Harris, Trading and Exchanges, Oxford
University Press, Oxford, 2003.
[5] C. Vinţe, „The Informatics of the Equity

Markets - A Collaborative Approach,”
Informatica Economică, Vol. 13, No. 2,
Bucharest, 2009.

[6] W. R. Stevens, UNIX Network Programming,
Vol. 1, Networking APIs: Sockets and XTI,
Second Edition, Prentice Hall, 1998.

[7] A. S. Tanenbaum, Computer Networks -
Fourth Edition, Vrije Universiteit
Amsterdam, The Netherlands, Pearson
Education Inc., Prentice Hall PTR, New
Jersey, 2003.

[8] A. S. Tanenbaum, S. Van Maarten,
Distributed Systems - Principles and
Paradigm, Vrije Universiteit Amsterdam,
The Netherlands, Prentice Hall, New Jersey,
2002.

[9] C. Vinţe Claudiu, Aspecte ale Proiectării
unui Order Request Broker (ORB) - Partea I,
Informatica Economică, Vol. 5, No. 2 (18),
Bucharest, 2001.

[10] C. Vinţe Claudiu, Aspecte ale Proiectării
unui Order Request Broker (ORB) - Partea a
II-a, Informatica Economică, Vol. 5, No.
3(19), Bucharest, 2001.

[11] J. Kerievsky, Refactoring to Patterns,
Addison-Wesley, Boston, 2005.

[12] T. G. Mattson, B. A. Sanders and B. L.
Massingill, Patterns for Parallel
Programming, Addison-Wesley, Boston,
2005.

[13] C. Vinţe, „Upon a Trading System
Architecture based on OpenMQ
Middleware,” Open Source Scientific
Journal, Vol.1, No.1, 2009, Available at:
http://www.opensourcejournal.ro/

[14] T. Erl (with additional contributors), SOA
Design Patterns, Prentice Hall by SOA
Systems Inc., New Jersey, 2009.

[15] Sun Microsystems, Inc., Java Message
Service, Available at:
http://java.sun.com/products/jms/

[16] Sun Microsystems, Inc., Open Message
Queue: Open Source Java Message Service
(JMS), Available at: https://mq.dev.java.net/

[17] M. Richards, R. Monson-Haefel and D. A.
Chappell, Java Message Service (Second
Edition), O’Reilly Media Inc., Sebastopol,
California, 2009.

Claudiu VINŢE has over twelve years experience in the design and
implementation of software for equity trading systems and automatic trade
processing. He is currently CEO and co-founder of Opteamsys Solutions, a
software provider in the field of securities trading technology and equity
markets analysis tools. Previously he was for over six years with Goldman
Sachs in Tokyo, Japan, as Senior Analyst Developer in the Trading
Technology Department. Claudiu graduated in 1994 The Faculty of

Cybernetics, Statistics and Economic Informatics, Department of Economic Informatics,
within The Bucharest Academy of Economic Studies. He holds a PhD in Economics from
The Bucharest Academy of Economic Studies. Claudiu has also given lectures and
coordinated the course and seminars upon The Informatics of the Equity Markets, within the
Master’s program organized by the Department of Economic Informatics. His domains of
interest and research include combinatorial algorithms, middleware components, and web
technologies for equity markets analysis.

